ATH-Blackburn Road Slip

Geotechnical Engineering Report

December 24, 2024 | Terracon Project No. N4245394

Prepared for:

Athens Township Board of Trustees 313 West Union Street Athens, Ohio 45701

Nationwide Terracon.com

Facilities
Environmental
Geotechnical
Materials

800 Morrison Road Columbus, Ohio 43219 P (614) 863-3113 **Terracon.com**

December 24, 2024

Athens Township Board of Trustees 313 West Union Street Athens, Ohio 45701

Attn: Mr. Ted Linscott

- P: (740) 592-1523
- E: tlinscott@ategnstwp.com
- Re: Geotechnical Engineering Report ATH-Blackburn Road Slip South Blackburn Road Athens, Athens County, Ohio Terracon Project No. N4245394

Dear Mr. Linscott:

We have completed the scope of Geotechnical Engineering services for the above referenced project in general accordance with Terracon Proposal No. PN424394 dated November 25, 2024. This report provides geotechnical recommendations concerning the remediation of an existing landslide located along South Blackburn Road in Athens, Ohio. Subsurface information collected during our 2017 exploration (Terracon Project No. N4175279) at this site was used in our analyses.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report or if we may be of further service, please contact us.

Sincerely, Terracon Consultants, Inc.

Jogen Sun Ren

Yogesh S. Rege, P.E. Senior Principal

Kein A Zus

Kevin M. Ernst, P.E. Principal/Regional Manager

Geotechnical Engineering Report

ATH-Blackburn Road Slip | Athens, Athens County, Ohio December 24, 2024 | Terracon Project No. N4245394

Table of Contents

Introduction	1
Site Visit Information	1
Geotechnical Characterization	2
Subsurface Profile	2
Groundwater Conditions	3
Geotechnical Overview	3
Soldier Pile Cantilever Retaining Wall – Design Considerations	4
General Comments	7

Attachments

Retaining Wall Analyses Supporting Information

Note: This report was originally delivered in a web-based format. **Blue Bold** text in the report indicates a referenced section heading. The PDF version also includes hyperlinks which direct the reader to that section and clicking on the **preracon** logo will bring you back to this page. For more interactive features, please view your project online at **client.terracon.com**.

Refer to each individual Attachment for a listing of contents.

Introduction

This report presents the results of our subsurface exploration and Geotechnical Engineering services performed to provide the geotechnical recommendations concerning the remediation of an existing landslide located along South Blackburn Road in Athens, Athens County, Ohio. The purpose of these services was to provide information and geotechnical engineering recommendations relative to:

- Recommendation for landslide stabilization
- Construction recommendations

The 2017 geotechnical exploration scope for this project involved the advancement of a total of three (3) test borings to depths ranging from 29 to 35 feet. A copy of the 2017 geotechnical report is included in the **Supporting Information** section.

Site Visit Information

The slip is located south of an existing concrete driveway on the east side of South Blackburn Road. Based on our site visit, the minimum estimated wall length required for

remediating the more pronounced slip would be about 188 feet and to ensure stabilization of the entire active slip area would be about 250 feet. The minimum northern limit is at the south end of the concrete driveway and the extended northern limit, to cover the entire active slip, is at the north end of the concrete driveway. Our senior engineer marked the 188-foot northern limit of the slip remediation with white paint on the roadway (see picture with painted line and paint can). The

average road width is about 15 feet outside of slip area (as the pavement has been widened in the area of the slip as the result of apparent repaving following the slip). No visible bedrock outcroppings, or overhead utilities were observed in the slip area.

Drainage appears to be an issue on the project site and would require storm drain replacement and improvements. A considerable amount of surface water is draining over the slip area from the concrete curb along the existing concrete driveway.

Geotechnical Engineering Report

ATH-Blackburn Road Slip | Athens, Athens County, Ohio December 24, 2024 | Terracon Project No. N4245394

There are two driveways for homes accessed from the concrete driveway and then at the very end of the driveway is Blackburn Hill Church. A catch basin inlet(s) could be installed within the concrete curb near Blackburn Road to catch much of the drainage and direct it under the Blackburn Road and outlet through the proposed wall. Damaged or defective storm drains under the roadway may be further saturating the embankment. A cross-pipe outlet was observed within the

middle of the project area. Another cross-pipe is located south of the project area next to the temporary traffic sign. A cross-pipe outlet was also observed within the project

site on the north end with no evidence of recent flow of water. We could not find any inlets in the ditch on the west side of the roadway within the project area. A cross pipe was observed going underneath the concrete driveway; however, we could not find an outlet on the west side of Blackburn Road. Due to the condition of visible storm drains and some inlets/outlets not being visible, we recommend a private utility locater be engaged to map the storm drains in the area and use camera video

inspection to check for damage and functionality. Tree clearing would be needed along the wall side of the road along with removal of one overhanging tree from the west side. It did not appear the west hillside adjacent to Blackburn Road has experienced any recent movement and the top of the scarp is confined to the roadway and west ditch line. A soldier pile wall using concrete lagging panels or plug piles will likely require guardrail due to narrow right-of-way and drop-off.

Geotechnical Characterization

Subsurface Profile

We have developed a general characterization of the subsurface conditions based upon our review of the subsurface exploration, geologic setting and our understanding of the project. This characterization, termed GeoModel, forms the basis of our geotechnical calculations and evaluation of the site. Conditions observed at each exploration point are indicated on the individual logs. The individual logs can be found in the **Supporting Information**. December 24, 2024 | Terracon Project No. N4245394

As part of our analyses, we identified the following model layers within the subsurface profile.

Model Layer	Layer Name	General Description
1	Surface Cover	Asphalt and aggregate base
2	Uncontrolled Fill	Gravel with sand, silt and clay
3	Native Fine-Grained Soils	Soft to medium stiff silty clay
4	Native Fine Grained Soils 2	Stiff to very stiff silty clay
5	Bedrock	Very weak to weak claystone, sandstone and shale and moderately strong limestone

Groundwater Conditions

The borings were observed during drilling and immediately after completion for the presence and level of groundwater. Groundwater was observed in Boring B-003-0-17 at a depth of about 14.5 feet below ground surface. The other two borings did not indicate groundwater at the time of our exploration.

Absence of groundwater in borings does not necessarily mean these borings were terminated above groundwater. Due to the low permeability of the soils encountered in the borings, a relatively long period of time may be necessary for a groundwater level to develop and stabilize in a borehole in these materials. Long term observations in piezometers or observation wells sealed from the influence of surface water are often required to define groundwater levels in some of the materials encountered in the borings.

Groundwater level fluctuations occur due to seasonal variations in the amount of rainfall, runoff and other factors not evident at the time the borings were performed. Therefore, groundwater levels during construction or at other times in the life of the structures may be higher or lower than the levels indicated on the boring logs. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project.

Geotechnical Overview

The borings encountered marginal strength native soils and existing fill to depths ranging from about 8.5 to 11 feet below the existing ground surface. Below these marginal strength soils, very stiff native soils and/or shale, claystone or sandstone bedrock was encountered. Based on the subsurface conditions and our site visit, it

appears that the slip extends to a maximum depth of about 11 feet below the existing ground surface. We recommend a minimum soldier pile wall length of about 188 feet based on our site visit and a length of 250 feet to ensure stabilization of the entire active slip area.

We have designed the retaining wall to retain lateral forces imparted by the proposed retained soil height as indicated above. The results of our analyses are included in **Retaining Wall Analyses** section.

The following section presents our detailed recommendations and considerations for slope remediation. The **General Comments** section provides an understanding of the report limitations.

Soldier Pile Cantilever Retaining Wall – Design Considerations

A Soldier Pile Cantilever retaining wall is proposed as the recommended remedial design to stabilize and protect the slope from ongoing movement. The approximate location of the proposed Soldier Pile Cantilever wall alignment is assumed to be approximately 5 feet away from the eastern edge of the existing road. It is estimated that the wall will be at least 188 feet in length, and 250 feet to ensure stabilization of the entire active slip area. However, the engineer/contractor should confirm the actual length to be stabilized based on the extent of the area affected by the landslide, considering conditions at the site, with a buffer on each side extending beyond the slip area.

The retaining wall was designed to resist lateral forces imparted by a retained soil height of approximately 11 feet, which corresponds to the depth of marginal strength soils encountered in the borings. The analyses were completed using the software program L-Pile. Soil strength parameters used in our analysis were developed from SPT N-values and hand penetrometer field test results, our experience with similar soils/bedrock. Lateral deformations were analyzed using L-Pile software for the lateral forces from retained soil mass calculated using "Wedge Method". A design traffic load of 250 psf was considered for the wall design.

Stability and strength checks for the chosen structural steel section were performed to ensure its adequacy against lateral failure, the steel section is checked for deflection and strength requirement.

The results of our analyses indicate that a soldier pile lagging wall consisting of a series of minimum 26 feet pile length, and 30-inch diameter structural drilled shafts reinforced with HP12x84 steel sections spaced at 4 feet center-to-center; installed within 5 feet of the eastern edge of existing road. The analysis indicated that the pile head deflection is less than 2 inches, which meets ODOT requirement.

The following tables provide a summary of the recommended "Soldier Pile Cantilever" retaining wall design wall design with plug piles or precast concrete panels as lagging:

Item	Requirement
Center-to-Center Structural Drilled Shaft Spacing	4 feet
Minimum Diameter of Structural Drilled Shaft	30 inches
Maximum Diameter of Plug Pile	36 inches
Maximum Retained Height	11 feet
Minimum Steel Pile Length	26 feet
Minimum Drilled Shaft Embedment in Weathered Bedrock	15 feet
Structural Steel Section ¹	HP 12x84, Grade 50
Minimum 28-day Unconfined Compressive Strength of Concrete (f'_c) for drilled shafts	4,000 psi
Notes:	

1. The steel sections be painted or galvanized for corrosion protection. If sacrificial steel is being considered as corrosion protection, a larger section than that recommended should be used.

The drilled concrete shafts are reinforced with HP 12X84 steel beam section placed centrally along the entire length of the drilled shaft excavation. Steel beam sections (structural drilled shafts/ soldier piles) are inserted vertically into the shafts and should be oriented such that the strong axis is parallel to the length of the wall.

Plug piles or precast lagging (if used) should be installed after installation of soldier piles to transfer the soil loads to the piles. Lagging may be designed for 50 percent of the lateral soil pressure. Any void between plug piles/lagging must be backfilled with a permeable granular soil material that does not allow the buildup of hydrostatic pressure.

Soldier Pile Cantilever Wall – Construction Considerations

The following construction considerations should be adhered to during drilled shaft installation.

 The drilled shaft wall should be constructed by a "Specialty Contractor". Consideration should be given to contractor's previous experience in such type of construction during the bid approval process.

- The actual bearing elevation at each shaft location should be determined in the field during construction through inspection by an authorized representative of the geotechnical engineer.
- Temporary steel casing should be made available on site and used on an as needed basis.
- The bearing surface of each shaft should be cleaned of any loose material prior to concrete placement.
- If water seepage is encountered during drilling, specifications should state that no more than 1 inch water should be allowed to collect at the bottom of the shaft hole prior to concreting. If water cannot be pumped out, then the concrete should be placed with a tremie pipe.
- The bearing surface of each shaft should be cleaned of any loose material prior to concrete placement.
- It is recommended that no shaft holes be left open overnight without being filled with concrete.
- Drilled shaft installation should either be bid per lineal foot for each diameter used or lump sum for the designated diameter and length, with an add or deduct for drill footage. An extra cost item should be included for any obstructions encountered in the overburden.
- Particular attention should be paid to the placement and orientation of the steel beam reinforcement. The steel beam should be oriented such that the strong axis is parallel to the length of the wall to resist the lateral force which will act in an upslope to downslope direction. The soldier pile that is placed within the hole must be vertical and not inclined more than 1 inch between top to bottom.
- The installation sequence shall be such that no drilled shaft is installed adjacent to either an open drilled shaft excavation or a drilled shaft in which the concrete has less than a 48-hour cure. Installing the shafts in an alternating sequence or any other sequence that meets this criterion is permissible.
- For the drilled shaft wall with plug piles, we anticipate the structural drilled shaft with rolled steel section would be extended to the top of the wall. The plug piles would be installed in between just behind the structural drilled shafts to retain the soils in between the structural drilled shafts. If lagging is used the wall face could be constructed of precast concrete lagging panels supported by the flanges of the rolled steel sections. The lagging panels can be placed between the flanges of the rolled steel sections.

- It is recommended that plug piles be installed to bear at least one foot into weathered bedrock. Concrete lagging panels if used should be embedded to a depth of at least 3 feet below the downslope bench level (created to facilitate the drilled shaft construction).
- Contractor must provide precast concrete lagging from a precast concrete manufacturer certified according to Supplement 1073 for permanent lagging. Class QC1 concrete with a 28-day design strength of at least 4000 psi according to C&MS 499 can be used. Reinforcing steel should be epoxy coated according to C&MS 709.00. Instead of epoxy coating, a corrosion inhibiting concrete admixture may be used at the specified dosage rate. The dimensions of the lagging or location of the reinforcing steel should not vary by more than ¼-inch. The panel must be placed between the flanges of the soldier piles and bearing against the flanges on the exposed side of the wall so that the soldier pile flange overlaps the end of the lagging by at least one inch more than the concrete cover over the reinforcing steel at both ends of the lagging. When installing the precast concrete lagging panels, hardwood wedges may be placed to hold the lagging panels against the front inside flange of the steel piles. The lagging can be placed after 12 hours of concrete placing in the shaft.
- As indicated in the site visit section, drainage corrections should be made at the site to prevent the buildup of hydrostatic pressures on the wall. Surface water should be directed away from the wall. We recommend installing rock protection at drainage points when water is discharged on slopes.

General Comments

Our analysis and opinions are based upon our understanding of the project, the geotechnical conditions in the area, and the data obtained from our site exploration. Variations will occur between exploration point locations or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. Terracon should be retained as the Geotechnical Engineer, where noted in this report, to provide observation and testing services during pertinent construction phases. If variations appear, we can provide further evaluation and supplemental recommendations. If variations are noted in the absence of our observation and testing services on-site, we should be immediately notified so that we can provide evaluation and supplemental recommendations.

Our Scope of Services does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken. December 24, 2024 | Terracon Project No. N4245394

Our services and any correspondence are intended for the sole benefit and exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geotechnical engineering practices with no thirdparty beneficiaries intended. Any third-party access to services or correspondence is solely for information purposes to support the services provided by Terracon to our client. Reliance upon the services and any work product is limited to our client and is not intended for third parties. Any use or reliance of the provided information by third parties is done solely at their own risk. No warranties, either express or implied, are intended or made.

Site characteristics as provided are for design purposes and not to estimate excavation cost. Any use of our report in that regard is done at the sole risk of the excavating cost estimator as there may be variations on the site that are not apparent in the data that could significantly affect excavation cost. Any parties charged with estimating excavation costs should seek their own site characterization for specific purposes to obtain the specific level of detail necessary for costing. Site safety and cost estimating including excavation support and dewatering requirements/design are the responsibility of others. Construction and site development have the potential to affect adjacent properties. Such impacts can include damages due to vibration, modification of groundwater/surface water flow during construction, foundation movement due to undermining or subsidence from excavation, as well as noise or air quality concerns. Evaluation of these items on nearby properties are commonly associated with contractor means and methods and are not addressed in this report. The owner and contractor should consider a preconstruction/precondition survey of surrounding development. If changes in the nature, design, or location of the project are planned, our conclusions and recommendations shall not be considered valid unless we review the changes and either verify or modify our conclusions in writing.

Geotechnical Engineering Report

ATH-Blackburn Road Slip | Athens, Athens County, Ohio December 24, 2024 | Terracon Project No. N4245394

Attachments

Geotechnical Engineering Report

ATH-Blackburn Road Slip | Athens, Athens County, Ohio December 24, 2024 | Terracon Project No. N4245394

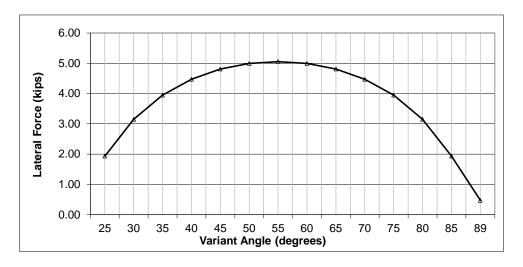
Retaining Wall Analyses

Facilities | Environmental | Geotechnical | Materials

Soldier Pile Wall Design

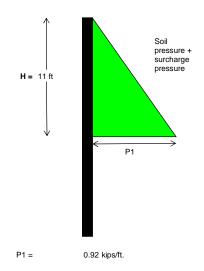
CLIENT:	Athens Township
PROJECT:	Blackburn Rd Slip
PROJECT NO.:	N4245394
CASE:	Boring B-001-17

CONSCIDER THE FOLLOWING FORLE MODEL TO CALCULATE THE RORLE ACTING ON THE CANTILEVER WALL
ECT W COL H
PA &
La l
WHERE F = TRAFFIC SURCHARGE > clated FORCE W = WEIGHT OF THE UNSTABLE SOLL WEDGE
PA = LATERAL FORCE DUE TO ACTUE PRESCIPE
() = ANGLE OF INEERWAL FRICTION AT THE FAILWING SURFACE
S = ANGLE OF PERTON BETWEEN THE PEER AND THE SOLL SURPRISE
Q = Failure Surface inclination CONSEDER THE FOLLOWING FORCE POLYGONI
F 0=90-5
$W = \frac{1}{180 - (\alpha - \phi + \Theta)}$
W Ma-t
AREA OF ACTIVE SOLL WEDGE = 1/2 H H
TINGER OF ACTIVE SOLL WEDGE = 1/2 H H +on X
= 0.5 H tang
: WT. OF WERGE = 0.5H ² Julk tank
F= trappic intensity x H/tanac


$\frac{PA}{Sn(\alpha \cdot \phi)} = \frac{\omega + F}{Sn(180 - \alpha + \phi - \Theta)}$	USING SINE RU	OLE ON THE FORCE TRIANGLE
$Sn(\alpha - \varphi)$ $Sin(180 - \alpha + \varphi - \varphi)$	PA =	W+F
	$Sn(d-\phi)$	Sin (180-0+p-0)

Soldier Pile Wall Design

CLIENT:	Athens Township
PROJECT:	Blackburn Rd Slip
PROJECT NO.:	N4245394
CASE:	Boring B-001-17


Angle of Internal Friction Φ:	20	degrees
Angle of Wall Friction δ:	0	degrees
Bulk Unit Weight y:	0.125	kcf
Traffic Surcharge Intensity:	0.25	ksf
Depth to slip surface H:	11	feet

Variant Angle (α)	W (kips)	F (kips)	P _A (kips)
25	16.22	5.90	1.93
30	13.10	4.76	3.15
35	10.80	3.93	3.95
40	9.01	3.28	4.47
45	7.56	2.75	4.81
50	6.35	2.31	5.00
55	5.30	1.93	5.06
60	4.37	1.59	5.00
65	3.53	1.28	4.81
70	2.75	1.00	4.47
75	2.03	0.74	3.95
80	1.33	0.48	3.15
85	0.66	0.24	1.93
89	0.13	0.05	0.47

Maximum Value of P_A = 5.06 kips

Distribute this P_{A} over the depth of the wall on a per foot basis.

CLIENT:	Athens Township
PROJECT:	Blackburn Rd Slip
PROJECT NO.:	N4245394
CASE:	Boring B-001-17
Pile Spacing =	4 feet

Pile Spacing =

Therefore contributing pressure for the wall section on each pier will be:

= 3.68 kips/ft.

306.43 lbs/in. =

Perform L-pile Analysis:

Steel Section	Width, bf	Depth, d	Equivalent Diameter	Section Area	lxx (in.4)	Sxx (in.3)
	(in.)	(in.)	(in.)	(in. ²)	,	
HP 8 x 36	8.155	8.02	9.12	10.36	119	29.8
HP 10 x 42	10.075	9.7	11.15	12.4	210	43.4
HP 10 x 57	10.225	9.99	11.40	16.8	294	58.8
HP 12 x 53	12.045	11.78	13.44	15.5	393	66.8
HP 12 x 84	12.295	12.28	13.86	24.6	650	106
HP 14 x 73	14.585	13.61	15.90	21.4	729	107
HP 14 x 89	14.695	13.83	16.09	26.1	904	131
HP 14 x 117	14.885	14.21	16.41	34.4	1220	172
W 21 x 93	8.42	21.62	15.22	27.3	2070	192
W 21 x 132	12.44	21.83	18.59	38.8	3220	295
W 21 x 147	12.51	22.06	18.74	43.2	3630	329

Lpile Analyses:

used HP12x84

1.1 (less than 1% of drilled shaft length above bedrock)

Steel Section top displacement

Bending Moment Check

Maximum bending moment from Lpile Analy		<mark>06</mark> in-lbs 18 kips-ft.	Strength Limit
For 50 ksi steel F_b allowable =	33 Ksi		
S _{XX} (required) =	70 in ³		
S _{XX} for selected section =	106 ^{in³}	ОК]

______ LPile for Windows, Version 2022-12.010 Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2022 by Ensoft, Inc. All Rights Reserved _____ This copy of LPile is being used by: Terracon Consultants, Inc Columbus, Ohio Serial Number of Security Device: 138584418 This copy of LPile is licensed for exclusive use by: Terracon, LPILE Global, Global License Use of this software by employees of Terracon other than those of the office site in LPILE Global, Global License is a violation of the software license agreement. ------Files Used for Analysis _____ Path to file locations: \Projects\2024\N4245394\Working Files\Calculations-Analyses\ Name of input data file: Lpile Pile Wall Analysis N4245394.1p12d Name of output report file: Lpile Pile Wall Analysis N4245394.1p12o Name of plot output file: Lpile Pile Wall Analysis N4245394.1p12p Name of runtime message file: Lpile Pile Wall Analysis N4245394.1p12r _____ Date and Time of Analysis

Date: December 24, 2024 Time: 11:09:14

Problem Title
Blackburn Road Slip
Job Number: N4245394
Client: Athens Township
Engineer: YSR
Description: Boring B-001-0-17
Program Options and Settings
Computational Options: - Conventional Analysis Engineering Units Used for Data Input and Computations: - US Customary System Units (pounds, feet, inches)
Analysis Control Options:=500- Maximum number of iterations allowed=1.0000E-05 in- Deflection tolerance for convergence=1.0000E-05 in- Maximum allowable deflection=100.0000 in- Number of pile increments=100
Loading Type and Number of Cycles of Loading: - Static Loading specified

- Use of p-y modification factors for p-y curves not selected

- Analysis uses layering correction (Method of Georgiadis)
- Analysis includes loading by multiple distributed lateral loads acting on pile
- Loading by lateral soil movements acting on pile not selected
- Input of shear resistance at the pile tip not selected
- Input of moment resistance at the pile tip not selected
- Computation of pile-head foundation stiffness matrix not selected
- Push-over analysis of pile not selected
- Buckling analysis of pile not selected

Output Options:

- Output files use decimal points to denote decimal symbols.
- Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile.
- Printing Increment (nodal spacing of output points) = 1
- No p-y curves to be computed and reported for user-specified depths
- Print using wide report formats

Pile Structural	Properties and	Geometry

Number of pile sections defined	=	2
Total length of pile	=	26.000 ft
Depth of ground surface below top of pile	=	11.0000 ft

Pile diameters used for p-y curve computations are defined using 4 points.

p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows.

	Depth Below	Pile
Point	Pile Head	Di ameter
No.	feet	i nches
1	0.000	12.3000
2	11.000	12.3000
3	11.000	12.3000
4	26.000	12.3000

Input Structural Properties for Pile Sections:

Pile Section No. 1:

Section 1 is an elastic pile Cross-sectional Shape Length of section

= Strong AISC Section Pile = 11.000000 ft

AISC Section Type	= HP
AISC Section Name	= HP12X84
Flange Width Section Depth Flange Thickness Web Thickness Section Area Moment of Inertia Elastic Modulus Pile Section No. 2:	<pre>= 12.30000 in = 12.30000 in = 0.685000 in = 0.685000 in = 24.600000 sq. in = 650.000000 in^4 = 29000000. psi</pre>
Section 2 is an elastic pile Cross-sectional Shape Length of section AISC Section Type	= Strong AISC Section Pile = 15.000000 ft = HP
AISC Section Name	= HP12X84
Flange Width Section Depth Flange Thickness Web Thickness Section Area Moment of Inertia Elastic Modulus	<pre>= 12.30000 in = 12.30000 in = 0.685000 in = 0.685000 in = 24.600000 sq. in = 650.000000 in^4 = 29000000. psi</pre>
Soil and Rock Layering Inform	
The soil profile is modelled using 3 layers	
Layer 1 is stiff clay with water-induced erosion	
Distance from top of pile to top of layer Distance from top of pile to bottom of layer Effective unit weight at top of layer Effective unit weight at bottom of layer	<pre>= 11.000000 ft = 13.500000 ft = 120.000000 pcf = 120.000000 pcf</pre>

Undrained cohesion at top of layer 2000. psf = Undrained cohesion at bottom of layer 2000. psf = = Epsilon-50 at top of layer 0.0000 Epsilon-50 at bottom of layer 0.0000 = Subgrade k at top of layer 0.0000 pci = Subgrade k at bottom of layer 0.0000 pci = NOTE: Default values for Epsilon-50 will be computed for this layer. NOTE: Default values for subgrade k will be computed for this layer. Layer 2 is stiff clay with water-induced erosion Distance from top of pile to top of layer = 13.500000 ft

Distance from top of pile to bottom of layer = 23.500000 ft Effective unit weight at top of layer = 125.000000 pcf = Effective unit weight at bottom of layer 125.000000 pcf Undrained cohesion at top of layer = 3000. psf Undrained cohesion at bottom of layer 3000. psf = Epsilon-50 at top of layer 0.0000 = Epsilon-50 at bottom of layer = 0.0000 Subgrade k at top of layer 0.0000 pci = Subgrade k at bottom of layer = 0.0000 pci

NOTE: Default values for Epsilon-50 will be computed for this layer.

NOTE: Default values for subgrade k will be computed for this layer.

Layer 3 is weak rock, p-y criteria by Reese, 1997

Distance from top of pile to top of layer	=	23.500000 ft
Distance from top of pile to bottom of layer	=	30.000000 ft
Effective unit weight at top of layer	=	135.000000 pcf
Effective unit weight at bottom of layer	=	135.000000 pcf
Uniaxial compressive strength at top of layer	=	250.000000 psi
Uniaxial compressive strength at bottom of layer	=	250.000000 psi
Initial modulus of rock at top of layer	=	5000. psi
Initial modulus of rock at bottom of layer	=	00000 po.
RQD of rock at top of layer	=	50.000000 %
RQD of rock at bottom of layer	=	0.0000 %
k rm of rock at top of layer	=	0.0005000
k rm of rock at bottom of layer	=	0.0005000

(Depth of the lowest soil layer extends 4.000 ft below the pile tip)

Summary	of Input	Soi I	Properties

Layer	Soil Type E50		Layer Rocł	Effective Mass	Cohesi on	Uni axi al
Num.	Name			Unit Wt.		qu
RQD %	or	kpy	Mod	dul us		
	(p-y Curve Typ	e)	ft	pcf	psf	psi
	krm	рсі	ķ	osi		
1	Stiff Clay		11.0000	120.0000	2000.	
	defaul t	defaul t	-			
	with Free Wate	r	13.5000	120.0000	2000.	
	defaul t					
2				125.0000	3000.	
	defaul t					
	with Free Wate	r	23.5000	125.0000	3000.	
	defaul t	defaul t	-			
3	Weak		23.5000	135.0000		250.0000
50.0000	5.00E-04			5000.		
	Rock		30.0000	135.0000		250.0000
0.00	5.00E-04			5000.		

Static Loading Type

Static loading criteria were used when computing p-y curves for all analyses.

Distributed Lateral Loading for Individual Load Cases

Distributed lateral load intensity for Load Case 1 defined using 2 points

Depth X ft	Dist. Load Ib/in
0.000	0.000
11.000	306.500
	ft 0.000

Distributed lateral load intensity for Load Case 2 defined using 2 points

Point No.	Depth X ft	Dist. Load Ib/in
1	0.000	0.000
2	11.000	460.000

Pile-head Loading and Pile-head Fixity Conditions Number of loads specified = 2Load Load Condition Compute Top y Run Analysis No. Type 1 vs. Pile Length Condi ti on Condition Axial Thrust 2 Force, Ibs -----No Yes V = shear force applied normal to pile axis M = bending moment applied to pile head y = lateral deflection normal to pile axis S = pile slope relative to original pile batter angle R = rotational stiffness applied to pile head Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3). Thrust force is assumed to be acting axially for all pile batter angles. Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness Axial thrust force values were determined from pile-head loading conditions Number of Pile Sections Analyzed = 2 Pile Section No. 1: _____ Moment-curvature properties were derived from elastic section properties Pile Section No. 2: Moment-curvature properties were derived from elastic section properties

	Layeri n	g Correction	Equi val ent	Depths of So	I & Rock Lay	yers
Layer No.	Below		Type As	Layer is Rock or is Below Rock Layer	Integral	F1 Integral for Layer Ibs
1 2 3	11.0000 13.5000 23.5000	0.00 2.5020 12.5000	N.A. Yes No	No No Yes	0.00 2168. N. A.	2168. 30046. N. A.
Notes:	The FO integral of Layer n+1 equals the sum of the FO and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.					

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head Applied moment at pile head Axial thrust load on pile head		-	= = =	0.0 lbs 0.0 in-lbs 0.0 lbs	
Depth Deflect. Bending Res. Soil Spr. Distrib.	Shear	SI ope	Total	Bendi ng	Soi I
X ' y Moment Es*H Lat. Load	Force	S	Stress	Stiffness	р
feet inches in-Ibs Ib/inch Ib/inch Ib/inch	l bs	radi ans	psi *	l b-i n^2	
0.00 1.0439 2.58E-06 0.00 0.00 1.8111	0.00	-0.00668	2.44E-08	1.88E+10	
0. 2600 1. 0231 8. 8152 0. 00 0. 00 7. 2445	14. 1269	-0.00668	0.08341	1.88E+10	
0. 5200 1. 0022 88. 1516 0. 00 0. 00 14. 4891	48.0313	-0.00668	0.8341	1.88E+10	
0.00 0.00 14.4891 0.7800 0.9814 308.5307 0.00 0.00 21.7336	104.5388	-0. 00668	2.9192	1.88E+10	

1.04000.9606740.47370.000.0028.9782	183.6492	-0.00668	7.0060	1.88E+10
1. 3000 0. 9397 1455.	285.3626	-0.00668	13. 7618	1.88E+10
0.00 1.5600 0.9189 0.2227 2521.	409.6790	-0.00668	23.8538	1.88E+10
0.00 0.00 43.4673	407.0770	-0.00008	23.0000	1.00L+10
	556.5984	-0.00668	37.9493	1.88E+10
	726. 1208	-0.00668	56. 7154	1.88E+10
0.00 0.00 57.9564	010 04/1	0.00//0	00.0104	1 005 10
2. 3400 0. 8564 8542. 0. 00 0. 00 65. 2009	918. 2461	-0.00668	80.8194	1.88E+10
2.6000 0.8356 11724.	1133.	-0.00667	110. 9287	1.88E+10
0.00 0.00 72.4455 2.8600 0.8147 15612.	1370.	-0.00667	147.7103	1.88E+10
0.00 0.00 79.6900				
3. 12000. 793920275.0. 000. 0086. 9345	1630.	-0. 00667	191.8315	1.88E+10
3. 3800 0. 7731 25784.	1913.	-0.00666	243.9596	1.88E+10
0.00 0.00 94.1791 3.6400 0.7524 32211.	2218	-0.00666	304.7619	1.88E+10
0.00 0.00 101.4236		-0.00000	304.7017	
3. 90000. 731639624.0. 000. 00108. 6682	2546.	-0. 00665	374.9055	1.88E+10
4. 1600 0. 7108 48096.	2896.	-0.00665	455.0577	1.88E+10
0.00 0.00 115.9127	22/0	0.00///		1 005 10
4. 42000. 690157695.0. 000. 00123. 1573	3269.	-0.00664	545.8857	1.88E+10
4.6800 0.6694 68494.	3665.	-0.00663	648.0569	1.88E+10
0.00 4.9400 0.6488 0.6488 0.6488 0.6488 0.562.	4083.	-0.00661	762.2383	1.88E+10
0.00 0.00 137.6464				
5. 2000 0. 6281 93970. 0. 00 0. 00 144. 8909	4523.	-0.00660	889.0973	1.88E+10
5.4600 0.6076 108788.	4987.	-0.00658	1029.	1.88E+10
0.00 0.00 152.1355 5.7200 0.5871 125087.	5473.	-0.00656	1184	1.88E+10
0.00 0.00 159.3800		0.00000		
5. 9800 0. 5666 142938. 0. 00 0. 00 166. 6245	5981.	-0.00654	1352.	1.88E+10
6. 2400 0. 5462 162411.	6512.	-0.00652	1537.	1.88E+10
0.00 0.00 173.8691	7044	0.00440	1707	1 005.10
6. 5000 0. 5259 183576. 0. 00 0. 00 181. 1136	7066.	-0.00649	1737.	1.88E+10
6.7600 0.5058 206504.	7643.	-0.00646	1954.	1.88E+10
0.00 0.00 188.3582 7.0200 0.4857 231266.	8242.	-0.00642	2188.	1.88E+10
0.00 0.00 195.6027				
7. 2800 0. 4657 257932. 0. 00 0. 00 202. 8473	8863.	-0.00638	2440.	1.88E+10
7. 5400 0. 4459 286572.	9507.	-0.00633	2711.	1.88E+10

0.00	0 00 210	0010				
	0.00 210.		10174.	-0.00628	3002.	1.88E+10
0.00	0.00 217.	3364		0.00010	00021	
			10864.	-0.00623	3312.	1.88E+10
	0.00 224.		11576.	-0.00617	3643.	1.88E+10
	0.00 231.		11570.	-0.00017	3043.	1.00E+10
			12310.	-0.00610	3996.	1.88E+10
	0.00 239.					
	0. 3492 0. 00 246.		13067.	-0.00603	4370.	1.88E+10
	0.00 246.		13847.	-0.00595	4767.	1.88E+10
	0.00 253.		10017.	0.00070	1707.	1.002110
9.3600	0. 3121	548268.	14650.	-0.00586	5187.	1.88E+10
	0.00 260.				- / 0 0	
	0. 2940 0. 00 268.		15475.	-0.00577	5632.	1.88E+10
			16322.	-0.00566	6101.	1.88E+10
0.00	0.00 275.	2927		0.00000	0101.	1.002110
			17192.	-0.00555	6596.	1.88E+10
	0.00 282.		10005	0 00540	7444	
	0. 2415 0. 00 289.		18085.	-0.00543	7116.	1.88E+10
			19001.	-0.00530	7663.	1.88E+10
	0.00 297.		17001.	0.00000	,000.	1.002110
10. 9200	0.2084	870674.	19846.	-0.00516	8238.	1.88E+10
	0.00 245.					
	0. 1925 1060.		20127.	-0.00502	8835.	1.88E+10
-05.405	0. 1771	996266	19799.	-0.00486	9426.	1.88E+10
-144 751	2550	0 00	17777.	0.00100	7120.	1.002110
11. 7000	0. 1622	1057335.	19201.	-0.00469	10004.	1.88E+10
-238.723	4592.	0.00	10001			
11.9600	0. 1622 4592. 0. 1479 7273.	1116080.	18291.	-0.00451	10560.	1.88E+10
-344.652	/2/3. 0 1341	0.00 1171469.	17061	-0.00432	11084	1.88E+10
-443.518	10320.	0.00	17001.	0.00102	11001.	1.002110
12.4800	0.1209	1222542.	15542.	-0.00412	11567.	1.88E+10
-530.266	13681.	0.00	10770	0.00001	10000	
12.7400 -605.541	0. 1084 17430.	1268453. 0.00	13770.	-0. 00391	12002.	1.88E+10
13.0000		1308469.	11781.	-0.00370	12380.	1.88E+10
-669.730	21650.	0.00		0.00010		
13.2600	0.08531	1341966.	9608.	-0.00348	12697.	1.88E+10
-723.054	26443.	0.00	((07	0.0000/	100.47	
13.5200 -1143.	0. 07480 47665.	1368424. 0.00	6697.	-0. 00326	12947.	1.88E+10
13. 7800		1383758.	3058.	-0.00303	13092.	1.88E+10
-1190.	57120.	0.00				-
14.0400		1387507.	-702.529	-0.00280	13128.	1.88E+10
-1221.	68113.	0.00				

	0.04754	1379374.	-4489.	-0.00257	13051.	1.88E+10
14.5600		0.00 1359497.	-8131.	-0.00234	12863.	1.88E+10
-1128. 14. 8200 -1031.	88263. 0.03293 97716.	0.00 1328636. 0.00	-11500.	-0.00212	12571.	1.88E+10
-1031. 15.0800 -927.902		1287737. 0.00	-14556.	-0.00190	12184.	1.88E+10
15. 3400 -824. 589	0. 02105	1237805. 0.00	-17290.	-0.00169	11712.	1.88E+10
15. 6000 -720. 789	0. 01609 139811.	1179846. 0. 00	-19701.	-0.00149	11163.	1.88E+10
15. 8600 -615. 473	0. 01173 163735.	1114871. 0. 00	-21786.	-0.00130	10548.	1.88E+10
16. 1200 -488. 234	0. 00795 191693.	1043905. 0.00	-23507.	-0.00113	9877.	1.88E+10
16. 3800 -303. 703	0. 00470 201427.	968185. 0.00	-24743.	-9.59E-04	9161.	1.88E+10
16. 6400 -132. 779	0. 00196 211162.	889510. 0. 00	-25424.		8416.	1.88E+10
16. 9000 22. 7356	220896.	809542. 0. 00	-25595.	-6.65E-04	7660.	1.88E+10
17.1600 161.5927	230630.	729795. 0.00	-25308.	-5.37E-04	6905.	1.88E+10
17.4200 283.0524	-0.00367 240365.	651621. 0.00	-24614.	-4.23E-04	6165.	1.88E+10
17.6800 386.8232	-0.00483 250099.	576203. 0.00	-23569.	-3.21E-04	5452.	1.88E+10
17.9400 428.2977	-0.00568 235278.	504550. 0.00	-22298.	-2.32E-04	4774.	1.88E+10
18. 2000 450. 1184 18. 4600	223874.	437066. 0.00 373964.	-20927. -19503.	-1.54E-04 -8.69E-05	4135. 3538.	1.88E+10 1.88E+10
463. 1243 18. 7200	-0.00884 217588. -0.00682	0.00 315371.	-19503.		2984.	
469. 1738 18. 9800	-0.00082 214783. -0.00683	0.00	-16584.	-2. 79E-05	2473.	1. 88E+10
469. 5783 19. 2400	214598. -0. 00670	0.00	-15125.	5. 70E-05	2005.	1. 88E+10
465. 3218 19. 5000	216562. -0. 00647	0.00	-13686.	8.84E-05	1580.	1.88E+10
457. 1769 19. 7600	220421. -0.00615	0.00 126487.	-12278.	1.13E-04	1197.	1.88E+10
445. 7714 20. 0200	226061. -0.00577	0.00 90350.	-10909.	1.31E-04	854.8530	1.88E+10
431. 6293 20. 2800	233468. -0. 00534	0.00 58416.	-9588.	1.43E-04	552.7019	1.88E+10
415. 1969 20. 5400	242708. -0. 00488	0.00 30523.	-8321.	1.50E-04	288. 7914	1.88E+10
396.8610 20.8000	253923. -0. 00440	0.00 6493.	-7114.	1.53E-04	61. 4327	1.88E+10

376. 9611	267328.	0.00				
21.0600	-0.00392	-13867.	-5971.	1.53E-04	131. 2069	1.88E+10
355.7982	283229.	0.00				
	-0.00345	-30764.	-4895.	1.49E-04	291.0766	1.88E+10
333.6410	302039.	0.00				
21.5800	-0.00299	-44413.	-3890.	1.43E-04	420. 2172	1.88E+10
310.7304	324309.	0.00				
21.8400	-0.00256	-55037.	-2957.	1.35E-04	520. 7388	1.88E+10
287.2823	350780.	0.00				
22.1000	-0.00215	-62865.	-2098.	1.25E-04	594.8009	1.88E+10
263. 4898	382456.	0.00				
22.3600	-0.00178	-68128.	-1313.	1.14E-04	644.5951	1.88E+10
239. 5227	420726.	0.00				
22.6200	-0.00144	-71059.	-626.643	1.02E-04	672.3286	1.88E+10
200.5380	435053.	0.00				
22.8800	-0.00114	-72038.	-60.990	9.06E-05	681. 5921	1.88E+10
162.0604	444787.	0.00				
	-8.73E-04	-71440.	390. 1342	7.88E-05	675.9295	1.88E+10
127.1217	454522.	0.00				
	-6.45E-04	-69604.	738.2419	6.71E-05	658.5586	1.88E+10
	464256.	0.00				
	-4.54E-04	-66833.	1316.	5.58E-05	632.3437	1.88E+10
	1884683.	0.00				
	-2.97E-04	-61393.	2102.	4.52E-05	580.8710	1.88E+10
	2412293.	0.00	0740	0 575 05		4 005 40
	-1.72E-04	-53716.	2713.	3.57E-05	508.2377	1.88E+10
	2939902.	0.00		0 755 05		4 005 40
	-7.46E-05	-44462.	3096.	2.75E-05	420.6744	1.88E+10
	467512.	0.00	2224	0 105 05	225 4700	1 005 10
24.7000		-34399.	3226.	2.10E-05	325.4700	1.88E+10
	95122.	0.00	2000		220 2202	1 005 10
24.9600	5.64E-05	-24334.	3098.	1.61E-05	230. 2392	1.88E+10
	522732.	0.00	2717.	1.29E-05	140 5400	1.88E+10
25. 2200 -162. 722	1.01E-04 5050341.	-15066. 0.00	2717.	1. 29E-05	142.5428	1.88E+10
- 162. 722 25. 4800		-7381.	2081.	1.10E-05	69.8335	1.88E+10
	5577951.	-7301. 0.00	2001.	1. TUE-05	09.0333	1. 00E+1U
25. 7400		-2077.	1183.	1.02E-05	19. 6562	1.88E+10
	6105561.	-2077. 0.00	1103.	1. UZE-U3	19.0002	1. 00E+1U
-331.382		0.00	0.00	1.01E-05	0.00	1.88E+10
	3316585.	0.00	0.00	1.01L-03	0.00	1.00L+10
-420.034	5510505.	0.00				

* The above values of total stress are combined axial and bending stresses.

Output Summary for Load Case No. 1:

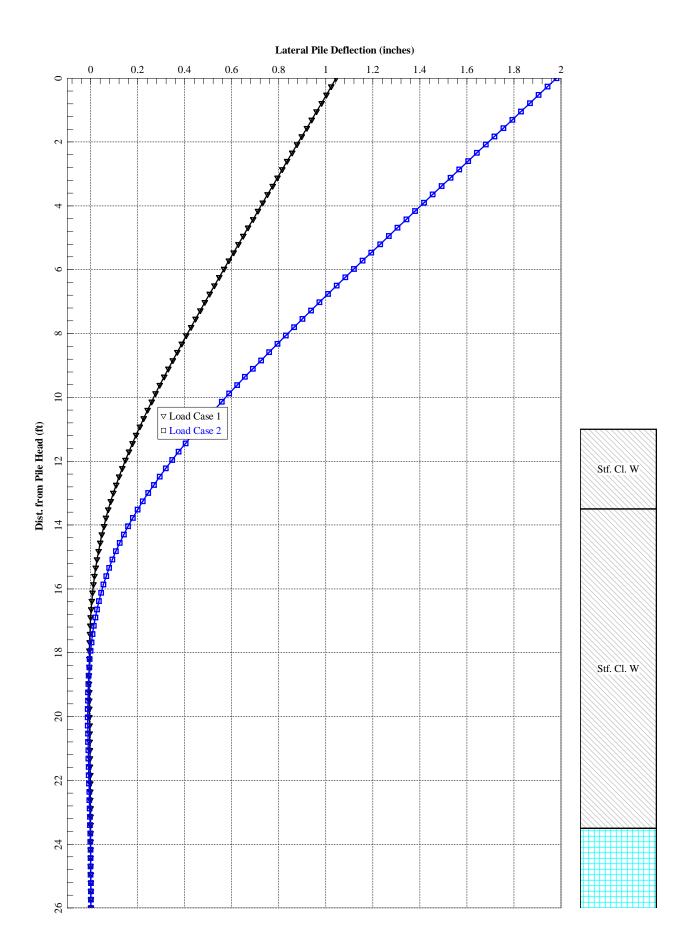
Pile-head deflection	=	1.04389680 i	nches
Computed slope at pile head	=	-0.0066782 r	radi ans
Maximum bending moment	=	1387507. i	nch-1bs
Maximum shear force	=	-25595. I	bs

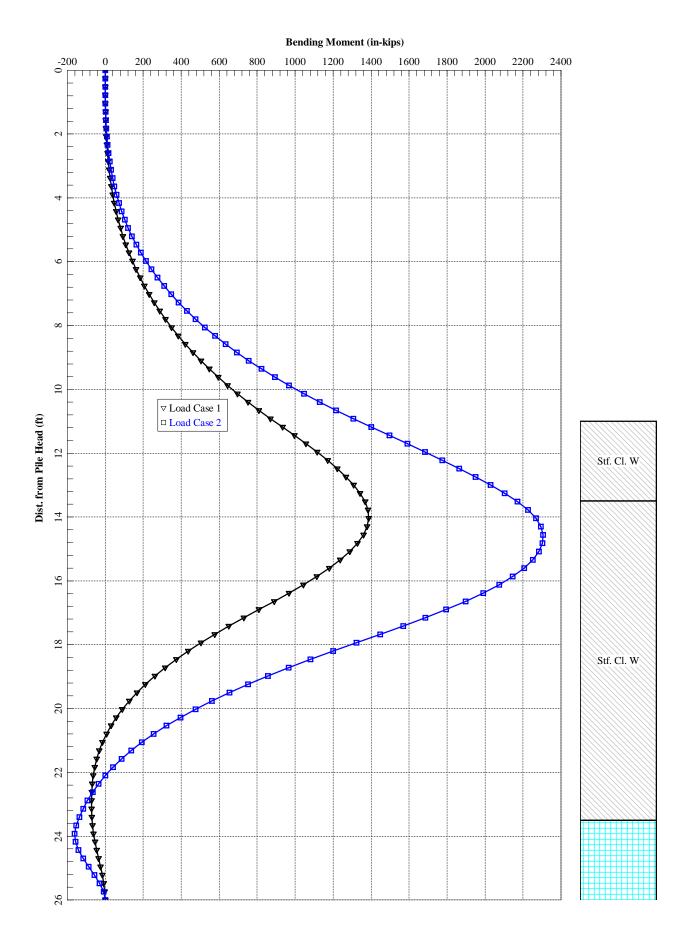
Depth of maxin Number of iter	o deflection poin	= 16.900 =	00000 feet k 00000 feet k 17 2 50125 inches	below pile				
Pi	le-head Deflecti	on vs. Pile Le	ngth for Loa	ad Case 1				
Boundary Condi	tion Type 1, She	ar and Moment						
Shear = Moment = Axial Load =	0. 0. i 0.	n-Ibs						
Pile Length feet	Pile Head Deflection inches	Maximum Moment In-Ibs	Maximum Shear Ibs					
26.00000 24.70000 23.40000 22.10000 20.80000	1. 04389680 1. 04936652 1. 05126644 1. 05993678 1. 08749518	1391895.						
	Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 2							
Pile-head cond	litions are Shear	and Moment (L	oadi ng Type	1)				
Shear force at Applied moment Axial thrust l			=	=	0.0 bs 0.0 in-lbs 0.0 bs			
Depth De Res. Soil Spr	eflect. Bendin	g Shear	SI ope	Total	Bendi ng	Soi I		
Х		Force	S	Stress	Stiffness	р		
feet i lb/inch lb/	nches in-Ibs /inch Ib/inch				l b-i n^2			
	1. 9804 1. 72E- 00 2. 7182	0.00	-0. 01204	1. 63E-08	1.88E+10			

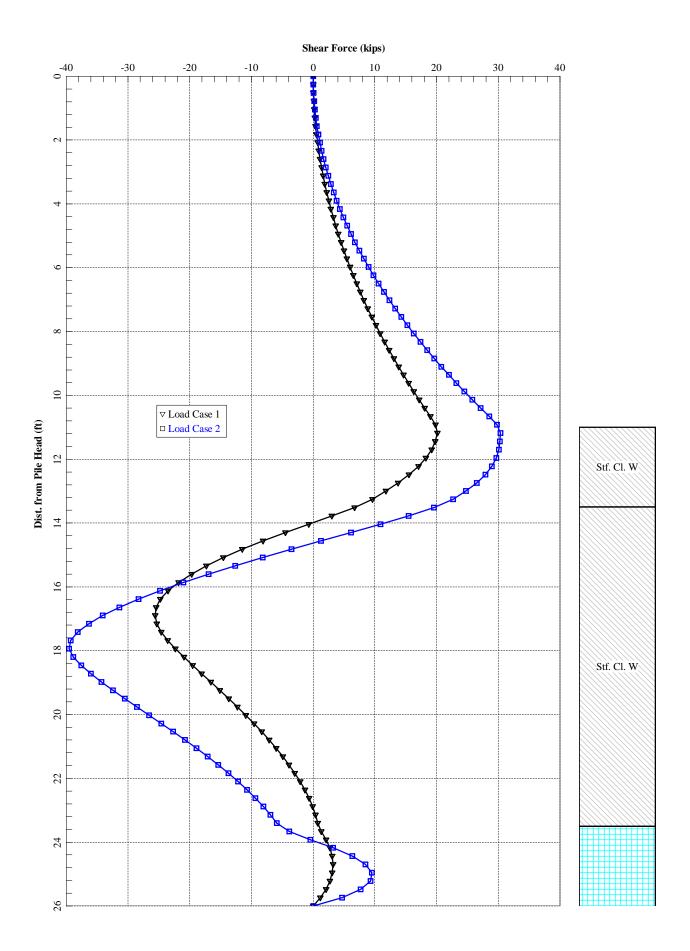
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2600 1.9428 13.2299	21.2018	-0.01204	0. 1252	1.88E+10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		72 0042	0.01204	1 2510	1 005.10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		72.0802	-0.01204	1.2018	1.00E+1U
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7800 1.8677 463.0477	156. 8935	-0. 01204	4. 3811	1.88E+10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		275. 6236	-0.01204	10. 5147	1.88E+10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 0.00 43.4909				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		428.2767	-0. 01204	20.6540	1.88E+10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5600 1.7550 3784.	614.8527	-0.01204	35.8002	1.88E+10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		025 2514	0 01204		1 005,10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 0.00 76.1091		-0.01204	00. 9049	1.00E+1U
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.0800 1.6799 8996.	1090.	-0. 01203	85. 1194	1.88E+10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1378.	-0.01203	121, 2951	1.88E+10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 0.00 97.8545				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1700.	-0. 01203	166. 4835	1.88E+10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.8600 1.5673 23430.	2057.	-0.01203	221. 6859	1.88E+10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2117	0 01202	207 0027	1 QQE 10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2447.	-0.01202	207. 7037	1.00L+10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2871.	-0. 01202	366. 1384	1.88E+10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3329.	-0.01201	457, 3914	1.88F+10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 0.00 152.2182				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3821.	-0. 01200	562.6640	1.88E+10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.1600 1.3799 72183.	4346.	-0.01199	682.9577	1.88E+10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4004	0 01100	010 0700	1 005.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4900.	-0.01198	019.2739	1.00E+1U
4.9400 1.2679 120908. 6127. -0.01194 1144. 1.88E+10 0.00 0.00 206.5818 6789. -0.01192 1334. 1.88E+10 0.00 0.00 217.4545 6789. -0.01190 1545. 1.88E+10 0.00 0.00 217.4545 7484. -0.01190 1545. 1.88E+10 0.00 0.00 228.3273 7484. -0.01187 1776. 1.88E+10 0.00 0.00 239.2000 745. 1.88E+10 76.001187 1776. 1.88E+10 0.00 0.00 239.2000 77. -0.01183 2030. 1.88E+10 0.00 0.00 250.0727 8977. -0.01180 2306. 1.88E+10 0.00 0.00 260.9455 9774. -0.01180 2306. 1.88E+10	4.6800 1.3052 102797.	5500.	-0. 01196	972. 6139	1.88E+10
0.00 0.00 206.5818 5.2000 1.2307 141031. 6789. -0.01192 1334. 1.88E+10 0.00 0.00 217.4545 7484. -0.01190 1545. 1.88E+10 0.00 0.00 228.3273 7484. -0.01190 1545. 1.88E+10 0.00 0.00 228.3273 8214. -0.01187 1776. 1.88E+10 0.00 0.00 239.2000 8977. -0.01183 2030. 1.88E+10 0.00 0.00 250.0727 6.2400 1.0826 243748. 9774. -0.01180 2306. 1.88E+10 0.00 0.00 260.9455 9774. -0.01180 2306. 1.88E+10		6127	-0 01194	1144	1 88F+10
0.00 0.00 217.4545 5.4600 1.1935 163271. 7484. -0.01190 1545. 1.88E+10 0.00 0.00 228.3273 3 3 1.1565 187733. 8214. -0.01187 1776. 1.88E+10 0.00 0.00 239.2000 3 3 1.195 14523. 8977. -0.01183 2030. 1.88E+10 0.00 0.00 250.0727 3 6.2400 1.0826 243748. 9774. -0.01180 2306. 1.88E+10 0.00 0.00 260.9455 955 3	0.00 0.00 206.5818				
5. 4600 1. 1935 163271. 7484. -0. 01190 1545. 1. 88E+10 0. 00 0. 00 228. 3273 3 3 5 1. 1565 187733. 8214. -0. 01187 1776. 1. 88E+10 0. 00 0. 00 239. 2000 3 3 3 3 1776. 1. 88E+10 0. 00 0. 00 239. 2000 3 3 3 3 2030. 1. 88E+10 0. 00 0. 00 250. 0727 6. 2400 1. 0826 243748. 9774. -0. 01180 2306. 1. 88E+10 0. 00 0. 00 260. 9455 9774. -0. 01180 2306. 1. 88E+10		6789.	-0.01192	1334.	1.88E+10
5. 7200 1. 1565 187733. 8214. -0. 01187 1776. 1. 88E+10 0. 00 0. 00 239. 2000 8977. -0. 01183 2030. 1. 88E+10 0. 00 0. 00 250. 0727 8977. -0. 01180 2306. 1. 88E+10 0. 00 0. 00 250. 0727 0. 01180 2306. 1. 88E+10 0. 00 0. 00 260. 9455 9774. -0. 01180 2306. 1. 88E+10		7484.	-0.01190	1545.	1.88E+10
0.00 0.00 239.2000 5.9800 1.1195 214523. 8977. -0.01183 2030. 1.88E+10 0.00 0.00 250.0727 -0.01180 2306. 1.88E+10 0.00 0.00 260.9455 9774. -0.01180 2306. 1.88E+10		0014	0 01107	177/	1 005.10
0.00 0.00 250.0727 6.2400 1.0826 243748. 97740.01180 2306. 1.88E+10 0.00 0.00 260.9455		8214.	-0.01187	1//0.	1.00E+1U
6. 24001. 0826243748.97740. 011802306.1. 88E+100. 000. 00260. 9455	5. 9800 1. 1195 214523.	8977.	-0. 01183	2030.	1.88E+10
0.00 0.00 260.9455		9774	-0 01180	2306	1 88F+10
	0.00 0.00 260.9455				
6.5000 1.0459 275513. 106050.01175 2607. 1.88E+10 0.00 0.00 271.8182		10605.	-0. 01175	2607.	1.88E+10
6. 7600 1. 0093 309924. 114700. 01170 2932. 1. 88E+10		11470.	-0.01170	2932.	1.88E+10

0.00	0 00 282	6000				
			12369.	-0. 01165	3284	1.88E+10
0.00			12007.	0.01100	02011	1.002110
			13302.	-0.01159	3663.	1.88E+10
0.00						
	0. 9006		14269.	-0.01152	4069.	1.88E+10
0.00			45050			
	0.8647		15270.	-0.01145	4505.	1.88E+10
0.00			1/20/	0.01127	4071	1 005.10
8.0600 0.00	0.8291		16304.	-0. 01136	4971.	1.88E+10
	0.00 337.		17373.	-0.01127	5468.	1.88E+10
0.00			17575.	-0.01127	5400.	1.002+10
			18475.	-0.01117	5997.	1.88E+10
0.00			101701	0101117	0,,,,,	11 002 110
	0. 7241		19612.	-0.01106	6558.	1.88E+10
0.00	0.00 369.					
9.1000	0. 6898	756157.	20782.	-0.01094	7154.	1.88E+10
0.00						
			21986.	-0.01081	7785.	1.88E+10
0.00	0.00 391.	4182				
			23224.	-0.01067	8452.	1.88E+10
0.00			04407	0 01051	0157	1 005 10
			24497.	-0. 01051	9157.	1.88E+10
0.00	0.00 413.		25803.	-0. 01035	9899.	1.88E+10
0.00			20003.	-0.01035	7077.	1.00L+10
	0. 5247		27143.	-0.01017	10680.	1.88E+10
0.00			27110.	0.01017	10000.	1.002110
	0. 4932		28516.	-0.00997	11501.	1.88E+10
0.00	0.00 445.	7818				
10. 9200	0.4624	1306721.	29786.	-0.00977	12364.	1.88E+10
0.00						
11. 1800	0. 4323	1401444.	30341.	-0.00954	13260.	1.88E+10
-12.302	88.7858	0.00				
	0. 4029		30278.	-0.00930	14155.	1.88E+10
	215. 9888	0.00	20000	0 00005	15047	1 005 10
11.7000	0.3743	1590379.	30090.	-0.00905	15047.	1.88E+10
-92.388 7 11.9600	70. 1718 0. 3465	0.00 1683812.	29664.	-0.00878	15931.	1.88E+10
-181.045	1630.	0.00	27004.	-0.00078	13731.	1.00L+10
12. 2200	0. 3195	1775482.	28944.	-0.00849	16799.	1.88E+10
-280.308	2737.	0.00	20744.	0.00047	10777.	1.002110
12. 4800	0. 2935	1864424.	27903.	-0.00819	17640.	1.88E+10
-387.365	4118.	0.00				
12.7400	0. 2684	1949594.	26519.	-0.00787	18446.	1.88E+10
-499.851	5810.	0.00				
13.0000	0.2444	2029900.	24778.	-0.00754	19206.	1.88E+10
-615.791	7862.	0.00				
13.2600	0.2214	2104210.	22673.	-0.00720	19909.	1.88E+10
-733.575	10340.	0.00				

	0. 1994		19573.	-0.00685	20545.	1.88E+10
	19611. 0. 1786	0.00 2226348.	15451.	-0. 00648	21065.	1.88E+10
	24264. 0. 1590	0.00 2267793.	10935.	-0.00611	21457.	1.88E+10
-1506.	29552.	0.00				
	0. 1405 34794.	2294579. 0.00	6141.	-0. 00573	21710.	1.88E+10
	0. 1232 39162.	2306114. 0.00	1285.	-0.00535	21819.	1.88E+10
14.8200	0. 1071	2302595.	-3489.	-0.00497	21786.	1.88E+10
15.0800	44091. 0. 09218		-8141.	-0.00459	21613.	1.88E+10
	49704. 0. 07845	0. 00 2251796.	-12634.	-0.00422	21305.	1.88E+10
	56156. 0. 06588	0.00 2205504.	-16934.	-0.00385	20867.	1.88E+10
-1344.	63658.	0.00				
	0. 05444 72488.		-21004.	-0.00349	20306.	1.88E+10
16. 1200	0. 04412 82995.	2074441.	-24808.	-0.00314	19627.	1.88E+10
16.3800	0.03486	1991329.	-28294.	-0.00280	18841.	1.88E+10
	94967. 0. 02664		-31396.	-0.00248	17957.	1.88E+10
	108647. 0. 01939		-34078.	-0.00217	16987.	1.88E+10
-791.383	127339.	0.00				
17. 1600 -649. 774		1685243. 0. 00	-36326.	-0.00189	15945.	1.88E+10
17.4200	0.00762	1568744.	-38114.	-0.00162	14843.	1.88E+10
17.6800	0.00299		-39261.	-0.00137	13695.	1.88E+10
-239.287 17 9400	250099. -9.06E-04	0.00 1323756	-39517	-0.00114	12525	1.88E+10
75.4174	259834.	0.00				
18.2000 355.3364	-0. 00411 269568.	1200831. 0. 00	-38845.	-9.29E-04	11362.	1.88E+10
18.4600	-0.00670	1081366.	-37565.	-7.40E-04	10231.	1.88E+10
465. 1662 18. 7200	216626. -0. 00873	0.00 966428.	-36011.	-5.70E-04	9144.	1.88E+10
530. 9420 18. 9800	189791. -0. 01026	0.00 856659.	-34284.	-4.19E-04	8105.	1.88E+10
575.5865	175072.	0.00				
19. 2400 605. 3194	-0. 01134 166473.	752493. 0. 00	-32442.	-2.86E-04	7120.	1.88E+10
19.5000	-0.01204	654219.	-30525.	-1.70E-04	6190.	1.88E+10
623. 6764 19. 7600	161574. -0. 01240	0.00 562017.	-28565.	-6.91E-05	5318.	1.88E+10
632. 9462 20. 0200	159208. -0. 01247	0.00 475975.	-26587.	1.68E-05	4503.	1.88E+10
20.0200	0.01247	<i>чтэттэ</i> .	20307.	1.002-03	4000.	1.002+10


634.7404	158758.	0.00				
20. 2800	-0. 01230		-24614	8.90E-05	3748.	1.88E+10
630. 2625	159886.	0.00	24014.	0.702 00	5740.	1.002110
20. 5400	-0. 01192	322386.	-22663.	1.48E-04	3050.	1.88E+10
620. 4509	162415.	0.00	22000.	1. 102 01	0000.	1.002110
20.8000	-0. 01137	254698.	-20749.	1.96E-04	2410.	1.88E+10
606.0615		0.00	20717.	1. 702 01	2110.	1.002110
21.0600	-0. 01069	192910.	-18887.	2.33E-04	1825.	1.88E+10
587.7188	171461.	0.00	10007.	2.000 01	1020.	1.002110
21.3200	-0.00992	136844.	-17087.	2.61E-04	1295.	1.88E+10
565.9494	178056.	0.00	17007.	2.012.01	1275.	1.002110
21.5800	-0.00907	86286.	-15360.	2.79E-04	816.3980	1.88E+10
541.2037	186198.	0.00	10000.	2.772 01	010.0700	1.002110
21.8400	-0. 00818	40997.	-13714.	2.90E-04	387.8917	1.88E+10
513.8725	196101.	0.00	15714.	2.702 04	307.0717	1.002110
22. 1000	-0.00726		-12157.	2 93E-04	6.7142	1.88E+10
484. 2980	208077.	0.00	12157.	2.752 04	0.7142	1.002110
22.3600	-0.00635	-34863.	-10695.	2.90E-04	329.8583	1.88E+10
452.7828	222560.	0.00	-10075.	2. 70L-04	527.0505	1.002+10
22. 6200	-0.00545	-66028.	-9334.	2.82E-04	624.7284	1.88E+10
419. 5968	240162.	0.00	-7554.	2.02L-04	024.7204	1.00L+10
22.8800	-0.00459		-8079.	2.69E-04	880. 9526	1.88E+10
384. 9830		0.00	-0079.	2.07L-04	000. 9520	1.00L+10
23. 1400	-0.00377		-6934.	2.51E-04	1102.	1.88E+10
349. 1637	288609.	0.00	-0934.	2. 31E-04	1102.	1.00E+10
	-0.00302		-5902.	2.30E-04	1290.	1.88E+10
a	~ ~ ~ / ~ -	0.00	-3902.	2.30E-04	1290.	1.00E+1U
	-0. 00234		-3866.	2.06E-04	1450.	1.88E+10
23.0000	-0.00234	-155270. 0.00	-3000.	2.00E-04	1450.	1. 00E+1U
992. 7148 23. 9200	1323330.	-160500.	-424.906	1.80E-04	1519.	1.88E+10
			-424.900	1. OUE-04	1019.	1. 00E+1U
1213. 218	-0.00121		2240		1475	1.88E+10
			3248.	1.54E-04	1475.	1.88E+10
	9902.		(2/2	1 205 04	1007	1 005.10
	-7.70E-04		6362.	1.30E-04	1327.	1.88E+10
		0.00	0.400	1 005 04	1100	1 005 10
	-4.01E-04		8498.	1.09E-04	1100.	1.88E+10
	3995122.	0.00	0500	0 175 05	005 0040	1 005 10
		-87205.	9509.	9. 17E-05	825.0949	1.88E+10
134.1997		0.00	0007		F00 0000	1 005 10
	1.71E-04	-56883.	9287.	7.98E-05	538.2038	1.88E+10
	5050341.	0.00	7705		07/ 0007	1 005 10
25.4800		-29256.	7725.	7.26E-05	276.8087	1.88E+10
-724.478		0.00	4/00		00 1000	1 005 10
		-8681.	4688.	6.95E-05	82.1398	1.88E+10
-1222. 61		0.00	A A A		0.00	
	8.39E-04	0.00	0.00	6.88E-05	0.00	1.88E+10
-1784. 33	16585.	0.00				


 * The above values of total stress are combined axial and bending stresses.


Output Summary for Load Case No. 2: Pile-head deflection = 1.98038407 inches Computed slope at pile head = -0.0120374 radians Maximum bending moment = 2306114. inch-lbs Maximum shear force = -39517. lbs Depth of maximum shear force = 14.5600000 feet below pile head Number of iterations Number of iterations = 30 Number of zero deflection points = 2 Pile deflection at ground = 0.45316909 inches _____ Summary of Pile-head Responses for Conventional Analyses Definitions of Pile-head Loading Conditions: Load Type 1: Load 1 = Shear, V, Ibs, and Load 2 = Moment, M, in-Ibs Load Type 2: Load 1 = Shear, V, Ibs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, Ibs, and Load 2 = Rot. Stiffness, R, in-Ibs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians Load Load Axial Pile-head Pile-head Max Load Shear Max Moment Case Type Pile-head Type Pile-head Loading Deflection Rotation in Pile in Pile No. 1 Load 1 2 Load 2 Ibs inches radi ans lbs in-lbs ____ ____ _____ 1 V, Ib 0.00 M, in-Ib 0.00 0.00 1.0439 -0.00668 -25595. 1387507. 2 V, Ib 0.00 M, in-Ib 0.00 0.00 1.9804 -0.01204 -39517. 2306114.

Maximum pile-head deflection = 1.9803840656 inches Maximum pile-head rotation = -0.0120374400 radians = -0.689695 deg.

The analysis ended normally.

Supporting Information

Contents:

Geotechnical Drilling Services Report (Terracon Project N4175279)

August 10, 2017

Athens Township Board of Trustee 313 West Union St Athens, Ohio 45701

- Mr. Ted J. Linscott Attn: Office: [740] 592 1523 Cell: [740] 707 5182 Email: tlinscott@athenstwp.com
- Re: Geotechnical Drilling Services South Blackburn Road Slip Athens County, Ohio Terracon Project No. N475279

Mr. Linscott:

Terracon Consultants, Inc. (Terracon) is pleased to submit the soil boring logs enclosed as Exhibit A-4. We have completed drilling services to perform three test borings along South Blackburn Road in Athens County, Ohio. The approximate boring locations are illustrated on Exhibit A-3.

This services were performed in general accordance with Terracon proposal number PN4175279 dated June 21, 2017, and a supplemental change order dated July 31, 2017, via signed agreement of services.

As part of the subject project, three (3) borings were completed at locations designated by Mr. Donnie Stevens of the Athens County Engineer's Office. The field exploration phase of the current project was completed on July 11, 2017. Final boring logs are presented in Appendix A with this transmittal letter. A field exploration description is also enclosed as Exhibit A-1.

We appreciate the opportunity to be of service to you on this project. Please contact us concerning any questions that may arise during the review of the logs, or if you require additional information about this project.

Sincerely, Terracon Consultants, Inc.

Abdul K. Mohammed, GISP Geotechnical Staff Engineer

V.m. En

Kevin M. Ernst. P.E. Senior Associate/Office Manager

Terracon Consultants, Inc. 800 Morrison Road P [614] 863 3113

F [614] 863 0475

Attachments: Appendix A

Field Exploration

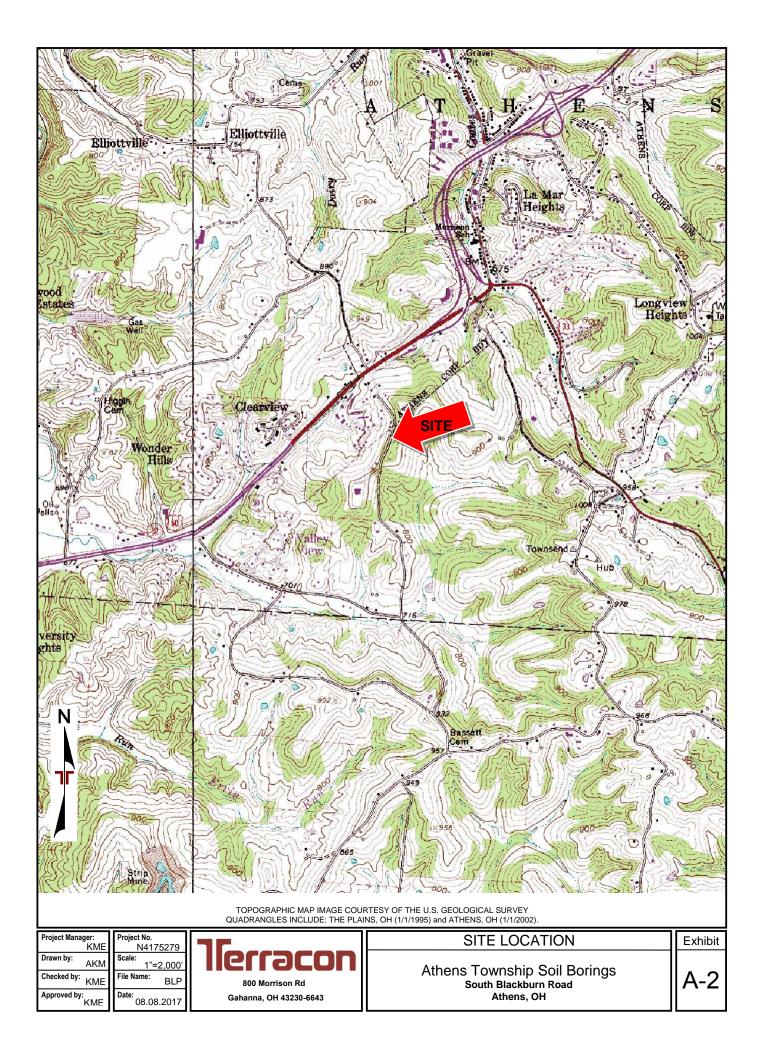
Exhibit A-1 Exhibit A-2 Exhibit A-3 Exhibit A-4 to A-6 Field Exploration Description Site Location Plan Boring Location Plan Boring Logs APPENDIX A FIELD EXPLORATION

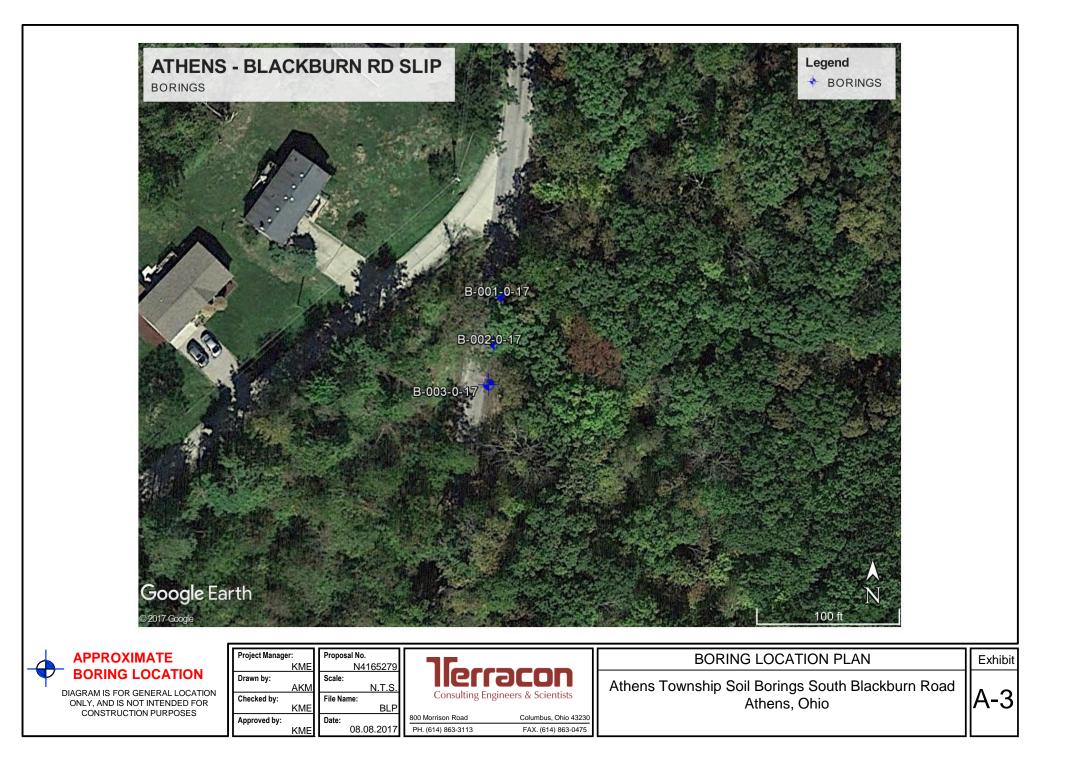
Field Exploration Description

The subsurface exploration consisted of drilling and sampling a total of three (3) test borings, designated as B-001-0-17 through B-003-0-17, to completion depths ranging from about 29 to 35 feet beneath the existing ground surface.

The boring locations were marked by Mr. Donnie Stevens of Athens County Engineer's office prior to drilling operations. Coordinates at the test boring locations and elevations were collected through GPS by Terracon after the borings were performed. The locations/ elevations of the borings should be considered accurate only to the degree implied by the means and methods used to define them.

Borings for the subject project were drilled with truck-mounted rotary drill rigs using continuous flight hollow stem augers to advance the boreholes. Samples of the soil encountered in the borings were obtained using the split-barrel sampling procedure. In the split-barrel sampling procedure, the number of blows required to advance a standard 2-inch O.D. split-barrel sampler the last 12 inches of the typical total 18-inch penetration by means of a 140-pound C.M.E. auto-hammer with a free fall of 30 inches, is the standard penetration resistance value (SPT-N). This value is corrected to an equivalent (60 percent) energy ratio (N_{60}) utilizing the drill rod energy ratio. In accordance with the ODOT SGE, the hammer system for the CME-45B truck rig was used for this project was calibrated and has a drill rod energy ratio of 90.3 percent.


An automatic SPT hammer was used to advance the split-barrel sampler in the boring performed on this site. A significantly greater efficiency is typically achieved with the automatic hammer compared to the conventional safety hammer operated with a cathead and rope. This higher efficiency affects the standard penetration resistance blow count (N) value by increasing the penetration per hammer blow over what would be obtained using the cathead and rope method.


The spilt-barrel samples were sealed in watertight glass jars. All samples were returned to the laboratory for testing and classification. Upon completion, the borings were backfilled with a cement-bentonite grout.

Where competent bedrock was encountered at the boring locations, as defined by auger refusal, a changeover to rock coring techniques was made. Rock coring was performed in the borings using an NQ-size core barrel with water as a circulating fluid. Percent recovery and rock quality designation (RQD) were calculated for the core samples and are noted at their depths of occurrence on the boring logs. RQD is the percent of total length cored consisting only of rock pieces at least 4 inches or more in length and is a measure of the integrity of the rock mass in-situ.

A field log of each boring was prepared by the drill crew. These logs included visual classifications of the materials encountered during drilling as well as the driller's interpretation of the subsurface conditions between samples. Final boring logs included with this report represent the engineer's interpretation of the field logs and include modifications based on laboratory observation and tests of the samples.

							-		-				STAT ALIG	EXPLOR B-001								
YPE: 1D:		SAMPLING FIRM / LOGGER: TERRACON / ABDUL N DRILLING METHOD: 3.25" HSA / NQ2					HAMMER: <u>CME AUTOMATIC</u> CALIBRATION DATE: 4/16/15							D 44								
START: 7		SAMPLING METHO			PT / NQ2							_ ELEVATION: <u>880.1 (MSL)</u> EOB: LAT / LONG: <u>39.293199, -82.11</u>									10	
MATERIAL DESCRIPTION AND NOTES			ELEV. DEPTHS		SPT/	NI	REC	SAMPLE	HP		GRAD	ATIC)N (%)	ATT	ERB	ERG		ODOT	НС		
			880.1			RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SEA	
	'HALT (9.75")			879.4																		
	BREGATE BASE (3.25")	/		879.0			2	9	70	- CC 4	4 50											1
	OWN, SILTY CLAY , TRACE FIN ACE FINE TO COARSE GRAVEI					- 2 -	24	9	78	SS-1	1.50	-	-	-	-	-	-	-	-	-	A-6b (V)	
					- 3 -																	
						- 4 -	1	•	07		4 00											1
						- <u>5</u>	22	6	67	SS-2	1.00	-	-	-	-	-	-	-	-	-	A-6b (V)	
						6	1	6			1.00											1
						- 7 -	22	6	72	SS-3	1.00	-	-	-	-	-	-	-	-	-	A-6b (V)	
						- 8 -																
						- 9 -																-
					- 10 -			88	ST-4	-	-	-	-	-	-	-	-	-	-	A-6b (V)		
				869.1		- ·																-
VERY STIFF, BROWN, SILTY CLAY , SOME FINE TO COARSE GRAVEL, TRACE FINE TO COARSE SAND, DAMP								400		0.00											1	
					- 12 -	6 11	26	100	SS-5	2.00	-	-	-	-	-	-	-	-	-	A-6b (V)		
				866.6		- 13																1
CLAYSTONE, BROWN, SEVERELY WEATHERED, VERY			000.0	TR	+ - 14 -	14		400													1	
VEAK.						- 15 -	24 32	84	100	SS-6	-	-	-	-	-	-	-	-	-	-	Rock (V)	
						16 -																
						- 17																
						- 18 -																
						- 19 -	24														5	1
						-	22 22	66	100	SS-7	-	-	-	-	-	-	-	-	-	-	Rock (V)	
						20 -																
						21																
					- 22 -																	
				856.6		- 23																
	NE, BROWN TO GRAY, SEVER			000.0		- 24 -																1
	AK, VERY THIN TO LAMINATED D WITH TIGHT, SLIGHTLY ROU						67		78	NQ2-1											CORE	
						- 25 -																
), CORE BARREL STUCK - UNA	BLE TO RETRIEVE				26																
	RQD 67%, REC 78%. ARREL STUCK FROM 26' TO 30)' - UNABLE TO				- 27 -																
RETREIVE						- 28 -	0		0	NQ2-2											CORE	
						- 29 -																
				850.1		L -											1					

PROJECT: BLACKBURN RD SLIP	DRILLING FIRM / OF			_			ME 45 B (/ OFF		-				EXPLOR	Ation IE 2-0-17
TYPE: LANDSLIDE	SAMPLING FIRM / L			_	MER:					ALIG		<u>ت ا</u>	PAGE						
PID: SFN: START: 7/11/17 END: 7/11/17	DRILLING METHOD		" HSA / NQ2 SPT / NQ2	_	CALIBRATION DATE: <u>4/16/15</u> ENERGY RATIO (%): 90.3					ELEVATION: <u>875.7 (MSL)</u> EOB: <u>35.</u> LAT / LONG: <u>39.293119</u> , -82.111170									1 OF 2
MATERIAL DESCRIPT									_		RADATION (%)			ATTERBERG					HOLE
AND NOTES		875.7	DEPTHS	RQD	N ₆₀	(%)		(tsf)		CS		<u>``</u>	CL		PL	_	wc	ODOT CLASS (GI)	
1.5' - ASPHALT (18")				_		/													
		874.2	- 1	19															
MEDIUM DENSE, BROWN TO GRAY, GRAVEL WITH SAND , SILT, AND CLAY, CONTAINS ASPHALT FRAGMENTS, DAMP (FILL)				8	17	100	SS-1	-	-	-	-	-	-	-	-	-	-	A-2-6 (V)	_
SOFT, REDDISH-BROWN, SILTY CLAY , TRACE FINE TO COARSE GRAVEL, TRACE FINE TO COARSE SAND		872.2		1 2	6	67	SS-2	0.75	-	-	_	-	_	_	-	-	-	A-6b (V)	-
			- 5	2															
			- 7	1 1 2	5	78	SS-3	1.00	-	-	-	-	-	-	-	-	-	A-6b (V)	_
		867.2	- 8	_															
SHALE, BROWN, SEVERLY WEATHERED, VERY WEAK.			TR	3 5 9	21	100	SS-4	-	-	-	-	-	-	-	-	-	-	Rock (V)	-
				-															
				4 7 10	26	100	SS-5	-	-	-	-	-	-	-	-	-	-	Rock (V)	-
			- 13	_															
			- 14	6 8 12	30	83	SS-6	-	-	-	-	-	-	-	-	-	-	Rock (V)	-
			15 - 16 -	_															-
		857.2	- 17 -	-															
LIMESTONE, GRAY, SEVERLY WEATHERE	Ð,	₹¥ 857.2	19 -	8		400	00.7											De els (1.0	-
MODERATELY STRONG.			20 -	14 15	44	100	SS-7	-	-	-	-	-	-	-	-	-	-	Rock (V)	-
			- 21	-															
				_															
		050 7	- 23	<u>50/2"</u>	-	<u>∖50</u> .∕	SS-8	<u> </u>	-	<u> </u>		<u> </u>	-	-	┝	<u> </u>		Rock (V)	7
CLAYSTONE, REDDISH BROWN, SEVERLY VERY WEAK, LAMINATED, MODERATELY	FRACTURED WITH	850.7	- 25 25 26 26																
TIGHT SLICKENSIDED JOINTS; RQD 66%,			- 27	- 82		100	NQ2-1											CORE	
			- 28																

	SFN:	PROJECT:	BLACKBURI	N RD SLIP	STATION / (OFFSET:				STAR	T: <u>7/1</u>	1/17	EN	ND:	7/11	1/17	PG 2	2 OF 2 B-	002-0-1
PID:	MATERIAL DE			ELEV.	DEPTHS SPT/ BOD N ₆			REC SAMPLE H			HP GRADATIC				6) ATTER		G	ODOT	HOL
	AND NO			845.7	DEFINS	RQD	IN ₆₀ (0	6) ID	(tsf) GR	CS	FS	SI	CL	LL	PL F	PI W	CLASS (GI) SEAL
VERY WEAK	, REDDISH BROWN, S , LAMINATED, MODEF ENSIDED JOINTS; RC	RATELY FRACTURED	THIW C	840.7	= 31 - - 32 - - 33 - - 34 - EOB - 35	82	1(00 NQ2-2										CORE	=
					EOB35		I						I						

ROJECT: BLACKBURN RD SLIP							STAT	EXPLOR														
(PE: <u>LANDSLIDE</u> D: SFN:	_ SAMPLING FIRM / LO DRILLING METHOD:	IRM / LOGGER: TERRACON / ABDUL M. ETHOD: 3.25" HSA / NQ2					HAMMER: <u>CME AUTOMATIC</u> CALIBRATION DATE: 4/16/15						ALIGNMENTBLACKBURN RD CENTERLIN ELEVATION: 872.8 (MSL) EOB: 29									
ART: 7/11/17 END: 7/11/17	SAMPLING METHOD:				-	RGY R					LAT /							.11118		1		
MATERIAL DESCRIPTION AND NOTES		ELEV			SPT/	N	REC	SAMPLE	HP		GRAD	ATIO	N (%))	ATT	ERBE	ERG		ODOT	- -		
		872.8	DEF	THS	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	CLASS (GI)	SE		
.5' - ASPHALT (18")	K	\otimes																				
		871.3			9			00.4												1		
VERY LOOSE TO LOOSE, BROWN TO GRAY, GRAVEL WITH SAND, SILT, AND CLAY, MOIST (FILL)				- 2 -	4	11	56	SS-1	-	-	-	-	-	-	-	-	-	-	A-2-6 (V)			
				- 3 -																		
				- 4 -	2	3	_	00.0												1		
				- 5 -	1	3	6	SS-2	-	-	-	-	-	-	-	-	-	-	A-2-6 (V)			
		<u>O</u>																				
					2 2	6	56	SS-3	_	_	_	_	_		_	_	-	_	A-2-6 (V)	1		
		<u>O</u>		- 7 -	<u>2</u>		50		-	-	-	-	-	-	-	-	-	-	A-2-0 (V)			
		864.3		- 8 -																		
MEDIUM DENSE, BROWN TO GRAY, GRAVEL WITH SAND, SILT, AND CLAY, MOIST (POSSIBLE FILL)				- 9 -	2 8	36	100	SS-4	_	_	_	_	-	_	_	_	_	_	A-2-6 (V)			
ILI, AND CLAT, MOIST (POSSIBLE FIL		$\sum_{n=0}^{\infty}$			16		100													-		
		861.8																				
SANDSTONE, BROWN, SEVERELY WEATHERED, VERY WEAK.					8 11	35	100	SS-5	-	-	-	-	-	-	-	-	-	-	Rock (V)			
		$\langle \cdot \rangle$		- 12 -	12														()	-		
	5			- 13	44															4		
	5		W	14 -	11 24	63	100	SS-6	-	-	-	-	-	-	-	-	-	-	Rock (V)			
				- 15 -	18															-		
				- 16																		
				- 17																		
				- 18																		
		853.8			50/4"		100	SS-7	<u> </u>	-		-)	-	-		- /	- /	-	Rock (V)	-		
LAYSTONE, REDDISH-BROWN TO GRA				- 19 -	0		83	NQ2-1											CORE			
/EATHERED, VERY WEAK TO WEAK, L NGLE FRACTURES, TIGHT, SLICKEN-S				20																1		
%, REC 83%.				- 21 -																		
IMESTONE, GRAY, MODERATELY WEA	THERED	850.7		- 22 -			400												0005			
IDDERATELY STRONG, THIN BEDDED,				- 23 -	27		100	NQ2-2											CORE			
RACTURED WITH NARROW SLIGHTLY QD 27%, REC 100%.	ROUGH JOINTS;			- 24 -																		
QD 27%, REC 100%.		847.8																				
LAYSTONE, REDDISH-BROWN TO GR				- 25 -																		
VEATHERED, WEAK, LAMINATED, SLIG VITH TIGHT SLICKEN-SIDED JOINTS; R				- 26 -																		
				_ 27 -	73		90	NQ2-3											CORE			
				- 28 -																		
		843.8	EOB-																			
			200	20																		